The forcing geodetic number of a graph

نویسندگان

  • Gary Chartrand
  • Ping Zhang
چکیده

For two vertices u and v of a graph G, the set I(u, v) consists of all vertices lying on some u − v geodesic in G. If S is a set of vertices of G, then I(S) is the union of all sets I(u, v) for u, v ∈ S. A set S is a geodetic set if I(S) = V (G). A minimum geodetic set is a geodetic set of minimum cardinality and this cardinality is the geodetic number g(G). A subset T of a minimum geodetic set S is called a forcing subset for S if S is the unique minimum geodetic set containing T . The forcing geodetic number fG(S) of S is the minimum cardinality among the forcing subsets of S, and the forcing geodetic number f(G) of G is the minimum forcing geodetic number among all minimum geodetic sets of G. The forcing geodetic numbers of several classes of graphs are determined. For every graph G, f(G) ≤ g(G). It is shown that for all integers a, b with 0 ≤ a ≤ b, a connected graph G such that f(G) = a and g(G) = b exists if and only if (a, b) / ∈ {(1, 1), (2, 2)}.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the edge geodetic and edge geodetic domination numbers of a graph

In this paper, we study both concepts of geodetic dominatingand edge geodetic dominating sets and derive some tight upper bounds onthe edge geodetic and the edge geodetic domination numbers. We also obtainattainable upper bounds on the maximum number of elements in a partitionof a vertex set of a connected graph into geodetic sets, edge geodetic sets,geodetic domin...

متن کامل

Distinct edge geodetic decomposition in graphs

Let G=(V,E) be a simple connected graph of order p and size q. A decomposition of a graph G is a collection π of edge-disjoint subgraphs G_1,G_2,…,G_n of G such that every edge of G belongs to exactly one G_i,(1≤i ≤n). The decomposition 〖π={G〗_1,G_2,…,G_n} of a connected graph G is said to be a distinct edge geodetic decomposition if g_1 (G_i )≠g_1 (G_j ),(1≤i≠j≤n). The maximum cardinality of π...

متن کامل

The upper forcing edge-to-vertex geodetic number of a graph

For a connected graph G = (V,E), a set S ⊆ E is called an edge-to-vertex geodetic set of G if every vertex of G is either incident with an edge of S or lies on a geodesic joining some pair of edges of S. The minimum cardinality of an edge-to-vertex geodetic set of G is gev(G). Any edge-to-vertex geodetic set of cardinality gev(G) is called an edge-to-vertex geodetic basis of G. A subset T ⊆ S i...

متن کامل

The Upper Edge Geodetic Number and the Forcing Edge Geodetic Number of a Graph

An edge geodetic set of a connected graph G of order p ≥ 2 is a set S ⊆ V (G) such that every edge of G is contained in a geodesic joining some pair of vertices in S. The edge geodetic number g1(G) of G is the minimum cardinality of its edge geodetic sets and any edge geodetic set of cardinality g1(G) is a minimum edge geodetic set of G or an edge geodetic basis of G. An edge geodetic set S in ...

متن کامل

On the forcing geodetic and forcing Steiner numbers of a graph

For a connected graph G = (V,E), a set W ⊆ V is called a Steiner set of G if every vertex of G is contained in a Steiner W -tree of G. The Steiner number s(G) of G is the minimum cardinality of its Steiner sets and any Steiner set of cardinality s(G) is a minimum Steiner set of G. For a minimum Steiner set W of G, a subset T ⊆ W is called a forcing subset for W if W is the unique minimum Steine...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discussiones Mathematicae Graph Theory

دوره 19  شماره 

صفحات  -

تاریخ انتشار 1999